SYLLABUS

OF

B. TECH

OF

II YEAR

B. TECH. (CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABUS AND EVALUATION SCHEME

Branch: Civil Engineering (w.e.f. 2022-23)

Year – II, Semester – III

S.	Course			P	eriod	ls	Credits	E	valuat	ion Sch	eme	Cubicat
No.	Course Category	Code No	Name of Subject	L	Т	P	C	Sess	ional l	Exam	Exam	Subject Total
110.	Category			L	1	Г	C	CT	TA	Total	ESE	Total
1	DC	CE201	Fluid Mechanics	3	1	-	4	40	20	60	40	100
2	DC	CE202	Basic Surveying	3	1	-	4	40	20	60	40	100
3	DC	CE204	Strength of Material	3	1	-	4	40	20	60	40	100
4	DC	CE231	Geotechnical Engineering	3	1	-	4	40	20	60	40	100
5	DC	CE101	Construction Materials	3	1	-	4	40	20	60	40	100
6	DC	As per Annexure	Departmental Elective II	3	1	-	4	40	20	60	40	100
			PRACTICAL /	DR	AW	ING	/ DESIG	GN				
7	DC	CE205	Fluid Mechanics Lab	0	0	2	1	40	20	60	40	100
8	DC	CE206	Basic Surveying Field Work	0	0	2	1	40	20	60	40	100
9	DC	CE238	Geotechnical Engineering Lab	0	0	2	1	40	20	60	40	100
10	DC	CE208	Material Testing Lab	0	0	2	1	40	20	60	40	100
	Total					8	28					1000

L – Lecture; T – Tutorial; P – Practical; C – Credits; CT – Class Test; TA – Teacher Assessment Sessional Total (CA) = Class Test + Teacher Assessment

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic Sciences **DC** – Departmental Core **HM** – Humanities **OE** – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

SYLLABUS AND EVALUATION SCHEME

Branch: Civil Engineering (w.e.f. 2022-23)

Year - II, Semester - IV

C	Commo			P	erio	ls	Credits	E	valuat	ion Sch	eme	Subject
S. No.	Course Category	Code No	Name of Subject	L	Т	P	С	Sess	sional	Exam	Exam	Subject Total
110.	Category			L	1	Г	C	CT	TA	Total	ESE	Total
			THEO	RY	SUE	3JE(CT					
1	DC	CE209	Hydraulic & Hydraulic Machines	3	1	-	4	40	20	60	40	100
2	DC	CE210	Advance Surveying	3	1	-	4	40	20	60	40	100
3	DC	CE212	Structural Analysis-	3	1	-	4	40	20	60	40	100
4	DC	CE234	Design of Reinforced Concrete Elements	3	1	-	4	40	20	60	40	100
5	DC	As per Annexure	Open Elective I	3	1	-	4	40	20	60	40	100
6	ESA	ES202	Disaster Management	2	1	-	3	40	20	60	40	100
7	DC	CE106	Introduction to Civil Engineering Profession	3	1	-	4	40	20	60	40	100
			PRACTICAL /	DR	AW	ING	/ DESIG	J N	•			
8	DC	CE213	Hydraulic & Hydraulic Machines Lab	0	0	2	1	40	20	60	40	100
9	DC	CE214	Advance Surveying Field Work	0	0	2	1	40	20	60	40	100
10	DC	CE215	Concrete Technology Lab	0	0	2	1	40	20	60	40	100
11	DC	CE252	Comprehensive Annual Assessment- I	-	-	-	1	40	20	60	40	100
		Total	20	6	8	31					1100	

 $\begin{array}{l} \textbf{L}-\text{Lecture; } \textbf{T}-\text{Tutorial; } \textbf{P}-\text{Practical; } \textbf{C}-\text{Credits; } \textbf{CT}-\text{Class Test; } \textbf{TA}-\text{Teacher Assessment} \\ \textbf{Sessional Total (CA)} = \text{Class Test} + \text{Teacher Assessment} \\ \end{array}$

Subject Total = Sessional Total (CA) + End Semester Examination (ESE)

BS – Basic SciencesDC – Departmental CoreHM – HumanitiesOE – Open Elective

DE – Departmental Elective **ESA** – Engineering Science & Art (Foundation Course & Engineering Courses)

Effective from Session: 201	Effective from Session: 2015-16											
Course Code	CE201	Title of the Course	Fluid Mechanics	L	T	P	C					
Year	2 ND	Semester	3 RD	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	The main objective of this course is to understand the basics of the fluid mechanics such as fluid and flow properties, fluid											
Course Objectives	behavior at re	est and in motion and fur	ndamental equations like mass, energy and momentum conse	rvatio	n of the	fluid fl	low.					

	Course Outcomes
CO1	Students are able to understand basic concept of properties of fluid and its properties.
CO2	Students are able to understand the Kinematics and Dynamics of Fluid and its application.
CO3	To understand the concept of fluid measurement, types of flows and dimensional analysis.
CO4	To determine the losses in a flow system, flow through pipes, boundary layer flow and flow past immersed bodies.
CO5	Students are able to understand the concept of turbulent flow in in pipe and its nature.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction & Fluid Statics	Introduction: Fluid Statics Fluid and continuum, physical properties of fluids, ideal and real fluids, Newtonian and NonNewtonian fluids, measurement of surface tension. Fluid Statics: Pressure-density-height relationship, measurement of pressure, manometers, pressure on plane and curved surfaces, centre of pressure, buoyancy, stability of immersed and floating bodies, fluid masses subjected to uniform acceleration.	8	CO1
2	Kinematics & Dynamics of Fluid Flow	Kinematics of Fluid Flow: Steady and unsteady, uniform and non-uniform, laminar and turbulent flows, one, two and three dimensional flows, streamlines, streak lines, and path lines, continuity equation, rotation and circulation, elementary explanation of stream function and velocity potential, graphical and experimental methods of drawing flow nets. Dynamics of Fluid Mechanics: Euler's equation of motion along a streamline, Bernoulli's equation from Euler's equation. Application of Bernoulli's equation- Pitot Tube, flow through orifice, mouthpieces, nozzles, notches, weirs, Venturimeter, Orifice meter, sluice gates under free and submerged flow conditions. Aeration of nape, cavitations, free and forced vortex, momentum equation and its application to stationary and moving vanes, pipe bends, and problems related to combined application of energy and momentum equations, flow measurements, determination of C _v , C _c and C _d , energy loss.	8	CO2
3	Dimensional Analysis & Laminar Flow	Dimensional Analysis and Hydraulic Similitude: Dimensional analysis, Buckingham's π theorem, important dimensional numbers and their significance, similitude, similarity laws, geometric, Kinematics and dynamic similarity, model studies. Laminar Flow: Equation of motion for laminar flow through pipes, Stoke's Law, flow between parallel plates, flow through porous media, Fluidization, measurement of viscosity	8	CO3
4	Turbulent Flow & Boundary Layer Analysis	Turbulent Flow: Transition from laminar to turbulent flow, equation for turbulent flow, eddy viscosity, mixing length concept and velocity distribution in turbulent flow, Hot-wire anemometer and LDA. Boundary Layer Analysis: Boundary layer thicknesses, boundary layer over a flat plate, laminar boundary layer, application of momentum integral equation, turbulent boundary layer, laminar sub-layer, smooth and rough boundaries, atmospheric boundary layer, local and average friction coefficient, separation of boundary layer and its control, measurement of shear.	8	CO4
5	Flow Past Submerged Bodies & Pipe Flow	Flow Past Submerged Bodies: Drag and lift, drag on sphere, Cylinder and disc, lift, Magnus effect and circulation. Pipe Flow: Nature of turbulent flow in pipes, equation for velocity distribution over smooth and rough surfaces, resistance coefficient and its variation, flow in sudden expansion, contraction, diffusers, bends, valves and siphons, concept of equivalent length, branched pipes, pipes in series and parallel, simple networks. Compressibility Effects in Pipe Flow: Transmission of pressure waves in rigid and elastic pipes; Water hammer, analysis of simple surge tank excluding friction.	8	CO5

Reference Books:

Grade, R.J and A.G Mirajgaoker, 'Engineering Fluid Mechanics (including Hydraulic Machines), Second Edition, Nem Chand and Bros., Roorkee, 1983

R. K. Bansal, 'Fluid Mechanics and Hydraulic Machines', Laxmi Publication, New Delhi 2007

R.K. Rajput, 'Fluid Mechanics and Hydraulic Machines', S.Chand Publication, New Delhi 2002

Hunter Rouse," Elementary Mechanics of Fluid", John Wiley & Sons. Omc/.1946.

Grade, R.J 'Fluid Mechanics through Problems.', Wiley Eastern Limited, New Delhi, 1989

e-Learning Source:	
https://nptel.ac.in/courses/105103095/7	
https://nptel.ac.in/downloads/103104043/	
https://nptel.ac.in/courses/112105171/8	
https://nptel.ac.in/courses/112105183/	

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	2	1	1	0	2	2	0	0	1	0	0	1	2	3
CO2	3	0	1	0	2	1	0	0	1	0	1	1	3	2
CO3	2	3	2	2	2	1	0	0	1	1	1	2	2	2
CO4	2	0	2	1	2	2	0	0	1	0	2	1	2	2
CO5	3	2	1	0	0	2	0	0	1	0	0	1	2	3

Name & Sim of Business Casadinates	Cione & Carlof Halb
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019	9-20						
Course Code	CE202	Title of the Course	Basic Surveying	L	T	P	C
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	surveyin 2. To learn area.	g instruments. about the process of est	s of measurements of distances, directions and elevations by tablishment of horizontal control points necessary for carrying preparations of topographical maps of the areas.				

	1.
	Course Outcomes
CO1	The students have the ability to understand the measurement techniques and equipment used in land surveying.
CO2	The students have the ability to take angular measurement from compass and correct them from different errors.
CO3	The students have an ability to calculate the linear measurement and area of the land.
CO4	The students will Gain the ability to measure differences in elevation
CO5	The students will be able to represent the topography of the land graphically.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Basic Surveying	Introduction: Importance of surveying to Engineers- Examples from different branches; plane and Geodetic Surveying, Control points, Classification of surveys, Methods of location a point, , principles of surveying, Conventional signs, Surveying instruments, their care and adjustment. Measurement of Distances: Measurement by chain and tape. Source of errors and precautions, Corrections to tape measurements, Field problems, Use and adjustment of auxiliary instruments, Modern trends EDM and Total Station	8	1
2	Measurement of Angles and Bearings	Measurement of Angles and Directions: Reference meridians and Bearings, Magnetic declination and its variations. Use of prismatic and surveyor compass, local attraction, Vernier and microptic theodolites, Temporary and permanent adjustments, Requirements of nonadjustable parts, Measurement of horizontal and vertical angles by different methods.	8	2
3	Traversing and Tachometry	Measurement of Angles and Directions: Reference meridians and Bearings, Magnetic declination and its variations. Use of prismatic and surveyor compass, local attraction, Vernier and microptic theodolites, Temporary and permanent adjustments, Requirements of nonadjustable parts, Measurement of horizontal and vertical angles by different methods.	8	3
4	Levelling	Measurement of Elevations: Different methods of determining elevations: Spirit, Trigonometric and Barometric methods, Spirit leveling- Definitions of terms, principle, Temporary and permanent adjustment of dumpy level. Sensitivity of bubble tube, Automatic levels, Levelling staff, Methods of spirit leveling Booking and reduction of fields notes, Curvature and refraction, Reciprocal leveling, plotting of profiles, Barometric leveling. Trigonometric leveling, sources of errors and precision of leveling procedures.	8	4
5	Contouring and Sheet	Contouring: Definition and characteristics of contours, contour interval, Use of contour maps, storage capacity of reservoir, direct and Indirect methods of contouring. Sheet Numbering System: CIM and I and A.C series, Scales and Numbering of Indian Topographic maps	8	5

Reference Books:

Agor, R, "Surveying", Vol. I & II, Khanna Publications, Delhi, 1995.

Arora, K, R., "Surveying", Vol. I & II, Standard Book House, Delhi, 1993.

Bannister, A. and Baker, R., "Solving Problems in Surveying "Longman Scientific Technical, U.K., 1994.

Kennie, T.J.M. and Petrie, G., "Engineering Surveying Technology", Blackie & Sons Ltd., London, 1990.

e-Learning Source:

https://nptel.ac.in/courses/105107122/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	1	0	0	0	2	1	0	1	0	0
CO2	2	1	1	0	1	1	0	0	1	0	1	1	0	0
CO3	1	1	1	0	1	0	0	0	1	0	0	0	0	0
CO4	2	2	1	1	1	0	1	0	2	1	0	1	0	0
CO5	2	1	1	1	0	0	0	0	1	1	0	1	0	0

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation	ì
---	---

Effective from Session: 2019-20												
Course Code	CE204	Title of the Course	Strength of Materials	L	T	P	C					
Year	2 nd	Semester	3 rd	3	1	0	4					
Pre-Requisite		Co-requisite										
Course Objectives	ToToToload	form bending moment of familiarize with strain e introduce methods in o d of long columns.	rain developed in structural members including their material equations, shear force equations and bending stress diagram energy and the theories of failure. order to calculate the deflections and rotations of a determination of the stress and strain developed in cylindrical and the stress and t	for a d	letermir eams ar	nant bea						

	Course Outcomes
CO1	In-depth understanding of stress strain relationship and of various properties for different materials with ability to calculate stress- strain for
	different structural members subjected to given loading conditions.
CO2	Interpretation of bending moments, shear forces and bending stresses for determinant beams under different loading and support conditions. Be
	able to analyze the effects of torsion on shafts.
CO3	Insight of strain energy in a structural element subjected to various types of forces and understanding of different failure theories.
CO4	Ability to calculate the deflections and rotations of a beam under given loading and support conditions and be able to comprehend the buckling
	loads of a long column according to its support conditions.
CO5	Ability to analyze the stresses and strains associated with thin- thick wall cylindrical and spherical pressure vessels.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Stress - Strain	Stress and Strain: Concept of stress and strain relationship, Ductility, Toughness, Elastic constants, Hardness, Brittleness, Tension, Compression, Shear, and Elongation, Concept of thermal stresses [5] Principal stresses: Stress transformation, Application of Mohr's circle in stress analysis [3]	8	CO1
2	Bending & Torsion Theory	Bending of Beams: Review of bending of beams, shear forces & bending moment diagrams for statically Determinant Beams, Shearing and bending stresses in beam section. [5] Torsion of Shafts: Torsion of circular shaft, power transmitted by shaft, combined bending and torsion in shafts. [3]	8	CO2
3	Strain Energy and Theories of Failure	Strain Energy and Impact Loading: Concept of strain energy or resilience, Strain energy in simple tension and compression, Stress due to different types of loading. [4] Theories of Failure: Maximum principal stress theory, Maximum shear stress theory, Maximum principal strain theory, Strain energy theory, Shear strain energy theory and their comparison.[4]	8	CO3
4	Slope & Deflection and Compression Members	Deflection of Beams: Deflection of beams, Integration method, Macaulay's method, Area Moment method, Conjugate Beam method. [4] Columns and Struts: Theory of columns & struts, Elastic stability, End conditions, Effective length and Buckling load, Euler's and Rankine's formulae and their limitations.	8	CO4
5	Thin and Thick Cylinder	Thin Cylinders: Theory of thin cylinders subjected to pressure, expression for hoop stress and longitudinal stress, Design of thin cylinders, Thin walled pressure vessels and uniform torsion. [4] Thick Cylinders and Spherical Shells: Stresses and strain in thick shells/cylinder subjected to pressures, compound cylinders press fits on solid shaft.[4]	8	CO5

Reference Books:

Kazmi, S. M. A., 'Solid Mechanics' TMH, Delhi, India.

R. K. Rajput, 'Strength of Materials', S. Chand & Company Ltd., New Delhi.

Norris, C.H. and Wilber, J. B. 'Elementary Structural Analysis' McGraw Hill.

Timoshenko, S. and Young, D. H., 'Elements of Strength of Materials', New York.
Surendra Singh, 'Strength of Materials', Vikas Publishing House Pvt. Ltd., New Delhi.
e-Learning Source:

https://nptel.ac.in/Aeronautical/Strength%20of%20Materials/course_strength%20of%20materials.pdf

https://nptel.ac.in/courses/105105108/

https://nptel.ac.in/downloads/105105108/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	2.
CO2	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO3	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO4	3	3	0	3	0	0	0	0	0	0	0	0	3	2
CO5	3	3	0	3	0	0	0	0	0	0	0	0	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23											
Course Code	CE231	E231 Title of the Course Geotechnical Engineering		L	T	P	C				
Year	2 nd	Semester	3 rd		1	0	4				
Pre-Requisite		Co-requisite									
Course Objectives	• To	Impart basics principles of	ties and classification of soil engineering. flow, soil permeability through porous media and effective stress e developed and distributed in soil due different load conditions								
		1	oil compaction ,Consolidation and their application t shear strength of soil and their application.								

	Course Outcomes								
CO1	Learner should be able to describe soil properties, relate index properties and able to classify soil.								
CO2	Learner should be able to assess the permeability and formulate effective stress for different conditions.								
CO3	Leaner should be able to compute stress in soil under different loading condition.								
CO4	Leaner should be able to interpret compaction and consolidation characteristics of different soil and their application.								
CO5	Leaner should be able to evaluate shear strength of soil.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introductio n to Soil and Index Properties	Engineering Geology of Soil and its formation, Preliminary definitions of Soil Properties, phase diagram, interrelationship, Index properties of Soil. Classification of Soils: Classification of soil systems – Particle size classification, Textural classification, AASHTO classification, Unified soil classification and Indian soil classification.	8	CO1
2	Permeabilit y in Soil	Soil Water: Types of soil water, Capillarity in soils, Permeability of soils, Darcy's law, Determination of permeability of soils, Permeability of stratified soils, Seepage velocity, flow net, Absolute coefficient of permeability, Factors affecting permeability, Effective stress principle- Effective stress under different field conditions- Seepage pressure-Quick sand condition.	8	CO2
3	Stresses in Soil	Stresses in soils: Normal and shear Stresses on a plane, Stresses due to applied loads, Boussinesq's solution for a point load, line load, strip load, uniformly loaded circular and rectangular areas, Isobar and pressure bulb concept, stress distribution on horizontal and vertical planes, Newmark's chart and its application, contact pressure.	8	CO3
4	Compactio n and Consolidati on	Soil structure. Compaction of soil – Theory of compaction, laboratory compaction tests, optimum moisture content and zero air void line, Field methods and compaction control. Compressibility and Consolidation: Virgin compression curve, Normal and Over Consolidated soils, Over Consolidation Ratio, Terzaghi's one dimensional consolidation theory, Laboratory consolidation test. Determination of coefficient of consolidation by log of time fitting and square root of time fitting methods, Consolidation settlement.	8	CO4
5	Shear Strength	Introduction of Shear Strength of Soil: State of stress at a point, Mohr's stress circle. Shear strength of soil. Mohr-Coulomb failures envelop. Direct, Triaxial, Unconfined and Vane shear tests, principles of drained and undrained tests, Strength of loose and dense sands, pore pressures.	8	CO5

Reference Books:

Gopal Ranjan and A.S.R.Rao, "Basic and Applied Soil Mechanics", New Age International (P) Ltd, 2nd Edition (2005), New Delhi

K R Arora, "Soil Mechanics and Foundation Engineering", Standard Publisher Dist., 2nd Edition 2009.

V.N.S.Murty, "Soil Mechanics and Foundation Engineering", Sai Kripa Technical Consultants, 1st edition 2009.

By B. C. Punmia, Ashok Kumar Jain, "Soil Mechanics and Foundations", Laxmi Publications Ltd., 16th edition (2017), New Delhi.

e-Learning Source:

https://nptel.ac.in/courses/105105168/

https://nptel.ac.in/courses/105101201/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	100	10)	1010	1011	1012	1501	1502
CO1	3	3	0	2	0	0	0	0	0	0	0	0	3	2
CO2	3	3	0	2	0	0	0	0	0	0	0	0	3	2
CO3	3	3	0	2	0	0	0	0	0	0	0	0	3	2
CO4	3	3	0	2	0	0	0	0	0	0	0	0	3	2
CO5	3	3	0	2	0	0	0	0	0	0	0	0	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23								
Course Code	CE101	Title of the Course	Construction Materials	L	T	P	C	
Year	2 nd	Semester	3 rd	3	1	0	4	
Pre-Requisite	NIL	Co-requisite	NIL					
Course Objectives	2. To tead 3. To tead	ch students how to select th technologies of basic	s to introduce students to the science and technology of co t appropriate construction materials. construction materials, such as bricks, lime, timber, Plywoo ozzolana, and Asphalt, Bitumen and Tar, Metals, insulating r	od, Gla	ss, plas			

	Course Outcomes									
CO1	Understand terminology and units related to engineering properties and testing of construction materials (aggregates, cement, concrete,									
	steel, masonry, wood, and soil).									
CO2	Understand terminology and units related to engineering properties and testing of construction materials like glass, steel, and metals									
CO3	Understand how to interpret select testing reports for construction materials like cement and aggregates									
CO4	Understand how to select timber and its preservation									
CO5	Learner will able to identify and use suitable material which are economical and environment friendly materials for construction									
	projects									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Construction Materials. Bricks and Stones	Introduction and properties of construction materials. Introduction to brick and its types, roperties and classification. Selection of stones and their uses.	08	CO1
2	Glass, metal and Ceramic materials	, 1 1		CO2
3	Cement and Aggregates and fly ash	Introduction to cement, classification, and test for quality control. Aggregates, properties of aggregates and their types. Fly ash: uses and classification.	08	CO3
4	Timber and Wood- based materials	Source of good timber, properties and classification of timber, preservation of timber. Wood products: properties, classification and applications.	08	CO4
5	Paints and Modern Materials	Paints: classification and uses. Modern materials: Autoclave Aerated Concrete, Polyvinyl Chloride Panels and Unplasticized Polyvinyl Chloride Panels Aerocon Panels, Damp Proofing Materials	08	CO5

Reference Books:

Sharma, SK; and Mathur, GC; "Engineering Materials;" Delhi-Jalandhar, S. Chand and Co.

TTTI, Chandigarh "Civil Engineering Materials:" New Delhi Tata McGraw Hill Publication

SC Rangawala, "Construction Materials", Charotar Publishers

S K Duggal; Building Materials, New Age Techno Press.

e-Learning Source:

ttps://nptel.ac.in/courses/105102088/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	2	1	1	0	2	2	0	0	1	0	0	1	1	1
CO2	3	0	1	0	2	1	0	0	1	0	1	1	1	2
CO3	2	3	2	2	2	1	0	0	1	1	1	2	2	1
CO4	2	0	2	1	2	2	0	0	1	0	2	1	1	1
CO5	3	2	1	0	0	2	0	0	1	0	0	1	0	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23										
Course Code CE211	CE211	Title of the Course	Concrete Technology	L	T	P	C			
Year	2 nd	Semester	4 th	3	1	0	4			
Pre-Requisite	NIL	Co-requisite	NIL							
Course Objectives		*	ated to Concrete technology which involves types and prope significance of test on concrete and mix design	erty of	concret	te.				

	Course Outcomes						
CO1	To understand the manufacturing process of cement and its various properties.						
CO2	To learn about various types of cement and test on coarse aggregates.						
CO3	To learn about various problems arising while concreting and tests performed on fresh and hardened concrete.						
CO4	To learn the procedure of the mix design of concrete as per Indian standard.						
CO5	To understand about special concretes						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Cement Concrete	Cement: Manufacture of Portland cement, its composition. Hydration of cement, physical and chemical properties, concept of strength development, Gel space ratio, power's Law, Gel structure [4]. Testing of cement for general physical and chemical properties as per BIS specifications.	08	CO1
2	Types of Cement	Different types of cement such as Slag cement, Portland Pozzolana cement and high Alumina cement, their characteristics, composition, use and properties, aggregates and testing of aggregates, classification source, physical and mechanical properties. Testing of aggregates for physical and mechanical properties	08	CO2
3	Tests on Fresh and Hardened Concrete	Proportioning of concrete, operation involved in concrete production. Workability, factors affecting workability, measurement of workability, problem of segregation, bleeding and Laitance, NDT(Rebound hammer, PUNDIT) methods	08	CO3
4	Mix Design	Concrete Mix Design: Principle and methods, Statistical quality control, concrete rheology, maturity concept, IS code method, ACI code method Admixture in concrete: Introduction, functions, classification, and IS specification.	08	CO4
5	Special Concrete	Special Concrete: Light weight concrete. High density concrete. Sulphar Impregnated concrete, polymer concrete, lime concrete, constituents and uses. High Strength Concrete, Fibre Reinforced Concrete	08	CO5

Reference Books:

Gambhir M.L., "Concrete Technology", - Tata McGraw Hill Publishing Company Ltd., New Delhi.

Shetty M.S, "Concrete Technology, Theory and practices", S. Chand & Company Ltd., New Delhi.

Spence RJS and Cook DJ- "Building Materials in Developing Countries", John Willey and Sons.

 $Shetty\ M.S, "Concrete\ Technology,\ Theory\ and\ practices",\ S.\ Chand\ \&\ Company\ Ltd.,\ New\ Delhi.$

e-Learning Source:

https://nptel.ac.in/courses/105102012/

https://npetl.ac.in/courses/105104030/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
	O-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	0	1	1	3	2	2	0	0	0	0	0	1	0
(CO2	3	1	1	0	2	1	0	0	0	0	0	0	2	0
(CO3	2	2	0	2	1	1	1	0	0	0	0	0	1	1
(C O4	3	2	3	1	1	1	1	0	0	0	0	0	1	3
(C O 5	3	1	0	0	2	2	2	0	0	0	0	0	1	0

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16										
Course Code	CE205	Title of the Course	Fluid Mechanics Lab L T P							
Year	2 nd	Semester	3 rd 0 0 2							
Pre-Requisite	NIL	Co-requisite	NIL							
Course Objectives		such as variation of v	urse is to make the students in better understanding of elocity and pressure, measurement of flow rate by var.				ıS			

	Course Outcomes						
CO1	Students are able to learn the concept of Buoyancy and Metacenter Height in a ship model						
CO2	Students are able to learn the concept of Bernoulli's Theorem and its application.						
CO3	Students are able to learn to find the discharge using Venturimeter and Orifice meter.						
CO4	Students are able to learn to find the discharge using Orifice meter.						
CO5	Students are able to learn to find the Coefficient of Discharge in rectangular and triangular notch.						
CO6	Students are able to verify the Impulse Momentum equation experimentally						
CO7	Students are able to plot flow pattern net using the Hele-shaw apparatus.						
CO8	Students are able to study the variation of friction factor 'f', for turbulent flow in commercial pipes.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Experiment-1	To determine experimentally the meta-centric height of a ship model.	2	1
2	Experiment-2	To verify the Bernoulli's equation experimentally.	2	2
3	Experiment-3	To verify the Impulse Momentum equation experimentally.	2	3
4	Experiment-4	To plot flow net using the Hele-shaw apparatus.	2	4
5	Experiment-5	To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.	2	5
6	Experiment-6	To calibrate an venturimeter and study the variation of the coefficient of discharge with the Reynolds number.	2	6
7	Experiment-7	To calibrate a given V-notch and Rectangular notch and determine the coefficient of discharge.	2	7
8	Experiment-8	To study the variation of friction factor 'f', for turbulent flow in commercial pipes.	2	8

Reference Books:

Lab Manual Provided by the Department.

Modi P.N. and Seth S.N., "Hydraulics and Fluid Mechanics", Standard Book House, Delhi, India.

Shames, "Mechanics of Fluids", McGraw-Hill, Auckland, N. Land.

Garde R.J., "Fluid Mechanics" RPH, Roorkee, India. Additional Learning Source.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	101	102	103	104	103	100	107	108	109	1010	1011	1012	1301	1302
CO1	3	0	0	3	0	0	0	0	0	0	0	0	1	3
CO2	2	0	0	2	0	0	0	0	0	0	0	0	1	3
CO3	2	0	0	2	0	0	0	0	0	0	0	0	2	2
CO4	2	0	0	3	0	0	0	0	0	0	0	0	1	3
CO5	2	0	0	3	0	0	0	0	0	0	0	0	2	2
CO6	2	0	0	1	0	0	0	0	0	0	0	0	1	2
CO7	2	0	0	2	0	0	0	0	0	0	0	0	1	2
CO8	3	0	0	3	0	0	0	0	0	0	0	0	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	Effective from Session: 2015-16								
Course Code	CE206	Title of the Course	BASIC SURVEY FIELD WORK	L	T	P	C		
Year	2 nd	Semester 3 rd		0	0	2	1		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives	and equipn 2. To use tech 3. To use tech	nent used in land surv nniques, skills, and m	natics, science, and engineering to understand the mean eying. odern engineering tools necessary for engineering practice of the properties of the properti	etice.	nent te	echniqu	es		

	Course Outcomes
CO1	Students are able to perform ranging and taking offset along a survey line.
CO2	Students are able to find out the reduced level of given points using Dumpy level by height of collimation method.
CO3	Students are familiar about Auto level and find out the reduced levels of given points by rise and fall method.
CO4	Students are able to perform fly leveling with a level.
CO5	Students are able to draw the longitudinal and cross sectional profiles along a given route.
CO6	Students are familiar about use of transit theodolite and total station.
CO7	Students are able to measure horizontal angle by Repetition method using transit theodolite.
CO8	Students are able to measure horizontal angle by reiteration method using transit theodolite
CO9	Students are able to determine the Tacheometric constants of a given Theodolite.
CO10	Students are able to to determine the bearing of a given traverse using prismatic compass and plotting of the traverse.
CO11	Students are able to determine the elevations of a given point.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Ranging and taking offset along a survey line.	2	1
2	To find out the reduced level of given points using Dumpy level by height of collimation method.	2	2
3	Study of Auto level and find out the reduced levels of given points by rise and fall method.	2	3
4	To perform fly leveling with a level.	2	4
5	To draw the longitudinal and cross sectional profiles along a given route.	2	5
6	Study of transit theodolite and total station.	2	6
7	Measurement of horizontal angle by Repetition method using transit theodolite.	2	7
8	Measurement of horizontal angle by reiteration method using transit theodolite	2	8
9	Determination of the Tacheometric constants of a given Theodolite.	2	9
10	To determine the bearing of a given traverse using prismatic compass and plotting of the traverse.	2	10
11	Students are able to determination of the elevations of a given point.	2	11

Reference Books: Lab Manual Provided by the Department. Kanetkar, T. P., "Surveying and Levelling" Vol I and II, Pune Vidyarthi Griha Prakashan, Pune, India. Punmia, B. C., "Surveying Vol I and II" Laxmi Publications, Delhi, India. e-Learning Source: -----

					Cour	se Artic	culation N	Aatrix: (N	Aapping	of COs wi	th POs and	PSOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	2	0	0	0	2	0	0	0	1	2	0	2	3	3
CO2	2	0	0	1	2	0	0	0	2	2	0	3	3	3
CO3	2	0	0	1	2	0	0	0	1	2	0	2	3	3
CO4	2	0	0	1	2	0	0	0	2	2	0	3	3	3
CO5	2	0	0	2	2	0	0	0	2	2	0	2	3	3

ion
1

Name & Sign of Program Coordinator	Sign & Seal of HoD
Tame & Sign of Frogram Coordinator	Sign & Star of Hob

Effective from Session: 202	Effective from Session: 2022-23								
Course Code	CE238	Title of the Course	Geotechnical Engineering Laboratory	L	T	P	C		
Year	2 nd	Semester	3 rd		0	2	1		
Pre-Requisite		Co-requisite							
Course Objectives		 To learn the process/procedure to determine the various 'Index Properties' of soil practically. To learn the process/procedure to calculate various 'Engineering Properties' of soil practically. 							
To perform various ex-situ practical do understand the behavior and nature of soil.									

	Course Outcomes							
CO1	Learner should be able to determine various index and engineering properties of soil by following Indian codes.							
CO2	Learner should be able to determine compaction and consolidation properties of soil by following Indian codes.							
CO3	Learner should be able to determine the shear strength of the soil by following the codal provision.							

Experiment No.	Content of Unit	Contact Hrs.	Mapped CO
1	Determination of water content of a given moist soil sample by (i) oven drying method, (ii) pycnometer method.	2	CO1
2	Determination of specific gravity of a given soil sample by (i) density bottle, (ii) pycnometer method.	2	CO1
3	Determination of in situ dry density of soil mass by (i) core-cutter method, (ii) sand replacement method.	2	CO1
4	Determination of relative density and grain size distribution of a given soil sample by sieve analysis and sedimentation (hydrometer) analysis.	2	CO1
5	Determination of consistency limits (liquid, plastic and shrinkage limits) of the soil sample used in experiment no. 5 (grain-size analysis).	2	CO1
6	Determination of compaction characteristics (OMC & MDD) of a given soil sample.	2	CO2
7	Determination of permeability of a remolded soil sample by constant head &/or falling head method.	2	CO1
8	Determination of consolidation characteristics of a remolded soil sample by an oedometer test.	2	CO2
9	Determination of shear strength characteristics of a given soil sample from Tri-axial Shear Test.	2	CO3
10	Determination of shear strength characteristics of a given soil sample from Direct Shear Test.	2	CO3

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	0	0	0	3	3	0	0	0	3	3	0	3	3	3
CO2	0	0	0	3	3	0	0	0	3	3	0	3	3	3
CO3	0	0	0	3	3	0	0	0	3	3	0	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16										
Course Code	CE208	Title of the Course								
Year	2 nd	Semester	3 rd	0	0	2	1			
Pre-Requisite		Co-requisite								
Course Objectives	• To	understand the propertic	es of constituents of building materials.							

	Course Outcomes
CO1	Able to evaluate the properties and quality of bricks.
CO2	Ability to test the properties of steel

Unit No.	Title of the Experiments	Content of Unit	Contact Hrs.	Mapped CO
Brick 1 Testing		Water absorption test		
	Dimension tolerance			
	Testing	Compressive strength	16	CO1
		Efflorescence Test		
		Hardness test		
		Impact Test		
2	Steel Testing	Torsion test	16	CO2
		Tensile Strength test		
		Double Shear test		

References:

Lab Manual Provided by the Department.

Neville, A.M., "Properties of Concrete", Longman, India.

Jha. J. &Sinha S.K., "Building Construction", Khanna Publishers, Delhi.

Arora,S.P&Bindra S.P.," A text book of building Construction", DhanpatRai& Sons.,Delhi.

Singh Surendra,"Engineering Materials", Konark Publishers Pvt. Ltd.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	1	0	3	3	3	0	3	2	2
CO2	0	0	0	3	3	1	0	3	3	3	0	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015	Effective from Session: 2015-16									
Course Code	CE209	Title of the Course	Hydraulic & Hydraulic Machines	L	T	P	C			
Year	2 nd	Semester	4 th	3	1	0	4			
Pre-Requisite	CE201	Co-requisite	CE314							
Course Objectives		dents are expected to re d of Civil Engineering	alize the importance of Hydraulics & Hydraulic Machines a	nd its a	applicat	tion in t	he			

	Course Outcomes									
CO1	Students will learn basic concept of open channel flow and its types.									
CO2	Students will learn about different equation and their application related to non-uniform flow.									
CO3	Students will learn about basic principle of Gradually Varied flow GVF and its applications.									
CO4	Students will learn about the condition and criteria of flow through hydraulic jump.									
CO5	Students will learn about the Hydraulic machines and there function, application.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction & Uniform Flow	Introduction: Difference between open channel flow and pipe flow, geometrical parameters of a channel, continuity equation. Uniform Flow: Chezy's and Manning's Equations for uniform flow in open channel, velocity distribution, most efficient channel section.	08 Hrs	1
2	Energy and Momentum Principles	Energy and Momentum Principles: Critical depth, concept of specific energy and specific force, application of specific energy principle for interpretation of open channel phenomenon, flow through vertical and horizontal contractions	08 Hrs	2
3	Non-uniform Flow in Open Channel	Non-uniform flow in open channel: Equation of gradually varied flow and its limitations, flow classification and surface profiles, integration of varied flow equation by analytical, graphical and numerical methods, flow in curved channel.	08 Hrs	3
4	Hydraulic Jump & Hydraulic Pumps	Hydraulic Jump, Surges, Water Waves: Classical hydraulic Jump, evaluation of the jump elements in rectangular and non-rectangular channels on horizontal and sloping beds, equation of motion for unsteady flow, open channel surge, celerity of the gravity wave, deep and shallow water waves. Hydraulic Pumps: Rotodymanic pumps, basic equations, axial and mixed flow pumps, cavitation in pumps, characteristic curves.	08 Hrs	4
5	Hydraulic Turbines	Hydraulic Turbines: Introduction, rotodynamic machines, Pelton turbine, equation for jet and roter size, efficiency, spear valve, reaction turbines, Francis and Kaplan type, head on reaction turbine, basic equation for type, head on reaction turbine, basic equation for rotodynamic machines, similarity law and specified speed, cavitations, characteristic curves.	08 Hrs	5
Referen	ce Books:	THE WOOD IN THE STATE OF THE ST		

- K. Subramanya: Flow in Open Channels, Tata McGraw Hills, 2014.
- V.T. Chow: Open Channel Hydraulics, Blackburn Press, 2009.
- 3. K. Rang Araju: Open Channel Flow, McGraw Hill Education, 2001.
- Madan Mohan Das: Open Channel Flow, PHI Learning Private Limited, 2008
- Grade, R.J and A.G Mirajgaoker, 'Engineering Fluid Mechanics (including Hydraulic Machines), Second Edition, Nem Chand and Bros., Roorkee, 1983.
- R. K. Bansal, 'Fluid Mechanics and Hydraulic Machines', Laxmi Publication, New Delhi 2007.
- 7. R.K. Rajput, 'Fluid Mechanics and Hydraulic Machines', S.Chand Publication, New Delhi 2002.

e-Learning Source:

- 1. https://nptel.ac.in/courses/105106114/
- https://nptel.ac.in/courses/105107059/6
- 3. https://nptel.ac.in/courses/105103021/
- **4.** https://nptel.ac.in/courses/105103096/2

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	0	0	0	2	0	0	1	1	0	2	3
CO2	2	2	3	2	0	1	1	0	0	1	1	1	2	3
CO3	2	3	3	2	0	1	0	0	0	2	0	1	3	2
CO4	2	2	2	3	0	0	0	0	2	2	2	0	2	2
CO5	3	2	2	2	0	1	0	0	3	2	3	1	2	3

1-	Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20												
Course Code	CE210	Title of the Course	Advance Surveying	L	T	P	C					
Year	2 nd	Semester	4 th	3	1	0	4					
Pre-Requisite	CE202	Co-requisite	Nil									
Course Objectives	To learn about the area and also learn	e process of establishment about theory of error.	advanced surveying instruments. of horizontal control points necessary for car) curves in transportation and irrigation engin			•	he					

•	Course Outcomes
CO1	The students have the ability to prepare a small scale maps.
CO2	The students have the ability to make control points of long observation and to measure them accurately.
CO3	The students have an ability to calculate the errors and correct them by applying different numerical methods.
CO4	The students will be able to make different types of curves used on highways and railway project.
CO5	The students will be able to tell about the general requirements and specifications of various civil engineering projects.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Plane Table Surveys	Plane Table Surveys: Principles, advantages and disadvantages, plane table equipment, Use of Telescopic Alidade and Indian Patterns Tangent Clinometer, different methods of plane table surveying, resection- two and three point problems, Field work in plane table surveying and contouring.	8	1
2	Trilateration and Triangulation	Trilateration and Triangulation: Principle of Trilateration, EDM instrument and their uses, reduction of observation, principle and classification of Triangulation system, Triangulation chains, strength of figures, station marks and signals, satellite station, intersected and resected points, Field work- Reconnaissance, intervisibility of station, angular measurement, base line measurement and its extension, adjustment of field observation and computation of coordinates.	8	2
3	Theory of Errors	Adjustment Computations: Weighting of observations, treatment of random errors, probability equation, normal law of errors, most probable value and measures of precision, propagation of errors and variances, most probable value, principle of least square, observations and correlative normal equations, adjustment of triangulation figures and level nets.	8	3
4	Curves	Curves: Classification of curves, elements of circular, transition and vertical curves, theory and methods of setting out simple, transition and vertical curves, special field problem.	8	4
5	Project Surveys	Project Surveys: General requirements and specifications for engineering project surveys, Reconnaissance's, preliminary and locations surveys for highways, railways and canals. Correlation of surface and underground surveys in case of culverts, bridges and tunnels. Principles and practice of hydrographic surveys, Layout of culverts, canals, bridges and buildings. Field Astronomy: Astronomical terms, coordinate systems, spherical trigonometry, Astronomical Triangle, relationship between coordinates	8	5

Reference Books:

Agor, R., "Surveying", vol. II & III Khanna Publications, Delhi, 1995.

Arora, K. R., "Surveying", vol. II & III Standard Publishing House, Delhi, 1993.

Bannister, A. and Baker, R., "Solving Problems in surveying". Longman Scientific Technical, U.K, 1994.

Kennie, T.J.M. and Petrie, G., "Engineering Surveying Technology", Blackie & Sons Ltd., London, 1990.

e-Learning Source:

https://nptel.ac.in/courses/105107158/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	0	0	3	1	2	2	2	0
CO2	2	2	1	2	1	1	0	0	3	2	1	1	2	0
CO3	2	2	1	1	0	0	0	0	1	1	1	1	2	0
CO4	3	2	1	1	1	1	0	0	3	2	1	2	2	0
CO5	2	1	0	0	1	1	0	0	1	1	2	1	2	0

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20										
Course Code	CE212	Title of the Course	Structural Analysis - I	L T	T	P	C			
Year	2 nd	Semester	4 th	3	1	0	4			
Pre-Requisite	CE204	Co-requisite	Nil							
Course Objectives	 calculate To impa truss for To impa to draw : To impa forces for To impa strain en load con To impa 	e degree of determinacy rt concept of truss, ther given loads. rt concept of rolling loa shear force, bending m rt concept of arches, so or three hinged arches. rt principle of Strain er ergy methods. After co- ditions.	ssification of structures, then they should be able classify stry by knowing its form and end condition. In they should be able classify truss as well as able to analyse ad, then they able to formulate and analyse beams/girder and oment and influence lines diagram for determinate structure that they should able to classify, analyse and compute bend eregy, then they should able to know the significances and appreciating they should able to calculate deflection in determinate structure and the should able to calculate deflection in determinate strictly bending, then learner should able to analysis unsymmetrical bending, then learner should able to analysis unsymmetrical	simpl l arche ing mo oplicat	e and constant and	ompour ll as abl and shea differer s for giv	nd le ur nt			

	Course Outcomes									
CO1	Learners should be able to classify structure in terms of stability and determinacy. Also able to analyze determinate truss for given load & support conditions.									
CO2	Learners should be able to analyze beams/girders subjected to moving load as well as draw the influence lines for reactions, shears, and bending moments by knowing loading conditions.									
CO3	Learner should able to analyze and draw the influence lines for reactions, radial shears, normal thrust and bending moments for three hinged arches by knowing its shapes and loading conditions									
CO4	Learner should know the principle and significance of strain energy methods as well as able to calculate deflections in statically determinate structures by applying strain energy methods for given loading conditions.									
CO5	Learner should able to analysis unsymmetrical beams by knowing the load pattern.									

Unit No.	Title of the Unit	Contact Hrs.	Mapped CO	
1	Classification of Structures	Classification of Structures, Types of structural framework, stress resultants, degrees of freedom per node, Static and Kinematic determinacy for beam trusses and building frames, Type of supports. Classification of Pin jointed determinate trusses, Analysis of determinate plane and space trusses, method of Tension co-efficient.	8	CO1
2	Rolling Loads	8	CO2	
3	Arches	Arches, Types of Arches, Analysis of Arches, Linear arch, Eddy's theorem, Analysis of three hinged arch, spandrel braced arch, moving load & influence lines diagram for three hinged arches.	8	CO3
4	Strain Energy	Strain Energy of deformable systems, Maxwell's reciprocal & Betti's theorem, Castigliano's first theorem, unit load methods for determinate structures.	8	CO4
5	Unsymmetrical Bending	Unsymmetrical bending, location of neutral axis, computation of stresses and deflection, Shear Centre and its location for common structural section. Bending of curved bars in plane of bending, stresses in bars of small & large initial curvatures.		CO5

Reference Books:

Wilbur and Norris, "Elementary Structural Analysis", Tata McGraw Hill.

Reddy, C.S., "Basic Structural Analysis", Tata McGraw Hill.

Jain, O.P. and Jain, B.K., "Theory & Analysis of Structures". Vol. I & II Nem Chand.

Jain, A.K., "Advanced Structural Analysis", Nem Chand & Bors, Roorkee, India 1996.

e-Learning Source:

https://nptel.ac.in/downloads/105101085/

https://nptel.ac.in/downloads/105105109/

https://nptel.ac.in/youtube.com/watch?v=qhEton-EEOw

https://nptel.ac.in/courses/105105166/

				C	Course Ar	ticulation	Matrix	: (Mapping o	of COs	with PC	s and PS	Os)			
PO-PS		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO		3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO2	2	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO	3	3	3	0	1	0	0	0	0	0	1	0	1	2	2
CO ₂	4	3	3	0	1	0	0	0	0	0	1	0	1	2	2
COS	5	3	3	0	1	0	0	0	0	0	1	0	1	2	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Corre
--

Name & Cian of Decompy Countington	Cian & Carl of HaD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23											
Course Code	CE234	Title of the Course	Design of Reinforced Concrete Structure-I	L	T	P	C				
Year	2 nd	Semester	4 th	3	1	0	4				
Pre-Requisite	CE204	Co-requisite	NIL								
Course Objectives	To understa	To understand the Basic concept and procedure of Designing Reinforced Concrete Structural Components									

	Course Outcomes							
CO1	Student will be able to design singly reinforced beam of different spans and loading.							
CO2	Student will be able to design doubly reinforced beam of different spans and loading.							
CO3	Student will be able to design beams for shear reinforcement and can determine development length.							
CO4	Student will be able to design slab and design the structure for serviceability							
CO5	Student will be able to design compression member (column) by limit state method.							

Unit No.	Title of the Unit	le of the Unit Content of Unit				
1	Attributes of Structural Design	state method of design. Assumptions. Analysis and Design of a rectangular singly and doubly. I				
2	Limit State Design of Beams	8	2			
3	Limit State Design of Slab & Stair	One way solid slabs, Simply supported and continuous. Two way slabs: Simply supported and continuous. Types of RCC stairs, loads and load effects on stairs, design of doglegged stairs. Introduction to Short term, long term deflections & Cracks in RCC.	8	3		
4	Limit State Design of Compression Members Classification of compression members, Codal provisions relating to design of RC columns, Effective length of RC column, Minimum eccentricity, Design of Axially loaded (tied and helically reinforced short columns by Limit state method		8	4		
5	Limit State Design of footing	Effect of torsion on beam, concept of equivalent shear and moments. Design of beam under torsion. Structural behavior of footings, Design of wall, isolated and combined footing.	8	5		

Reference Books:

A.K. Jain "Reinforced concrete design, limit state Method", Nem Chand & Bros.; 7th Edition 2012

S.Unnikrishna. and Devdas Menon, "Reinforced concrete design", McGraw Hill Education; 3rd Edition 2009

B.C. Punmia and A.K. Jain "Limit State Design of Reinforced Concrete", Laxmi Publications, 1st Edition Reprint 2007

Sayal I.C and Goel A.K., "Reinforced Concrete Structures" S Chand & Company; 4th Edition 2007

IS 456-2000 Indian Standard "Plain & Reinforced Concrete-code of practice", BIS, New Delhi.

e-Learning Source:

http://nptel.ac.in/courses/105105105/

http://nptel.ac.in/downloads/105105104/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	roi	102	103	104	103	100	107	108	109	1010	1011	1012	1301	1302
CO1	3	2	2	1	2	1	0	0	1	0	0	1	3	2
CO2	3	2	2	1	2	1	0	0	1	0	0	1	2	2
CO3	3	2	2	1	2	1	0	0	1	0	1	1	3	2
CO4	3	2	3	1	2	1	0	0	1	0	1	1	3	2
CO5	3	2	3	1	2	1	0	0	1	0	1	1	3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23										
Course Code	CE106	Title of the Course	Introduction to Civil Engineering Profession	L	T	P	C			
Year	2 nd	Semester	4 th	3	1	0	4			
Pre-Requisite	Nil	Co-requisite	Co-requisite Nil							
Course Objectives	1 1	To develop perspective to different disciplines of civil engineering along with the pre-requisites, scope and opportunities. To make familiar with career prospects and novel/emerging areas of civil engineering.								

	Course Outcomes							
CO1	Learner will able to get background, application and future prospects of Civil Engineering							
CO2	Learner will be able to identify the role of structural and geotechnical engineering							
CO3	Learner will be able to comprehend the need of Water Resource Engineering in national as well as state projects							
CO4	After completing this unit learner will be able to identify the role of Highway Engineering, Traffic Engineering and Environmental							
	engineering from sustainability prospective.							
CO5	This unit will develop an understanding of role of management in construction industry especially in the context resource optimization							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	What is Civil Engineering- History, Scope and Future	History of Civil Engineering, Development in civil engineering, Skill required for civil engineering, Various scope of civil engineering.	08	CO1
2	Structure and Geotechnical Engineering	08	CO2	
3	Water Resource Engineering and Hydrology	80	CO3	
4	Environment, Highway and Traffic Engineering			CO4
5	Project Management, Structural Modelling and Introduction to Computational Engineering	Introduction to project management. Application and scope of project management. Introduction to structural modelling and its need. Role of computation in engineering with application scope.	08	CO5

Reference Books:

Civil Engineering Profession for Intelligent People, Civil Press, Independently Published, 2019.

Introduction to Civil Engineering: A Student's Guide to Academic and Professional Success, S. T. Mau & Sami Maalouf, Cognella, Inc, Revised edition (18 August 2014).

Introduction to Civil Engineering, Valdengrave Okumu, Createspace Independent Pub (22 October 2014).

e-Learning Source:

https://archive.nptel.ac.in/courses/105/106/105106201/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	0	0	0	0	0	0	1	0	0	0	0	0	0
CO2	2	1	0	0	0	2	0	3	0	0	0	0	2	1
CO3	2	1	0	0	0	1	2	1	0	0	0	0	1	0
CO4	1	1	0	0	0	1	3	1	0	0	0	0	2	0
CO5	1	2	0	0	0	1	2	2	0	0	0	0	1	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16								
Course Code	CE213	Title of the Course	Hydraulic & Hydraulic Machines Lab	L	T	P	C	
Year	2 nd	Semester	4 th	0	0	2	1	
Pre-Requisite	NIL	Co-requisite	CE209					
Course Objectives		1	and on experience different hydraulic machine.					

	Course Outcomes
CO1	Students are able to learn to find the Manning's coefficient of roughness 'n' for the bed of a given flume.
CO2	Students are able to learn to study the velocity distribution in an open channel and to determine the energy and momentum correction factors.
CO3	Students are able to learn the rot dynamic pumps and their characteristics.
CO4	Students are able to calibrate a sharp-crested rectangular and triangular weirs.
CO5	Students are able to learn the characteristics of free hydraulic jump.
CO6	Students are able to learn the flow characteristics over a hump placed in an open channel.
CO7	Students are able to learn the flow through a horizontal contraction in a rectangular channel.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Experiment -1	To determine the Manning's coefficient of roughness 'n' for the bed of a given flume.	2	1
2	Experiment-2	To study the velocity distribution in an open channel and to determine the energy and momentum correction factors.	2	2
3	Experiment-3	To study the flow characteristics over a hump placed in an open channel.	2	3
4	Experiment-4	To study the flow through a horizontal contraction in a rectangular channel.	2	4
5	Experiment-5	To calibrate a sharp-crested rectangular and triangular weirs.	2	5
6	Experiment-6	To calibrate a broad-crested weir and study the pressure distribution on the upstream face of the weir.	2	6
7	Experiment-7	To calibrate a Venturiflume.	2	7
8	Experiment-8	To study the characteristics of free hydraulic jump.	2	8
9	Experiment-9	To study the flow over a free overfall in an open channel and to determine the end depth.	2	9
10	Experiment-10	To study rotodynamic pumps and their characteristics.	2	10
11	Experiment-11	To study rotodynamic turbines and their characteristics	2	11

Reference Books:

- 1. Lab manual provided by the department
- 2. Streeter, V.L. "Fluid Mechanics", Mc Graw-Hill, N.Y, USA.
- 3. Garde, R.J. "Fluid Mechanics" RPH, Roorkee
- 4. Jain, A.K. "Mechanics of fluids", Khanna Publisher., Delhi. Additional Learning Source
- 5. Shames, "Mechanics of fluids" Mc Graw-Hill (Int. St. ed.) Auckland, NZ.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	0	0	2	0	0	0	0	0	0	0	0	2	3
CO2	3	0	0	2	0	0	0	0	0	0	0	0	2	3
CO3	2	0	0	3	0	0	0	0	0	0	0	0	2	3
CO4	2	0	0	2	0	0	0	0	0	0	0	0	2	3
CO5	3	0	0	3	0	0	0	0	0	0	0	0	2	3
CO6	2	0	0	1	0	0	0	0	0	0	0	0	2	3
CO7	1	0	0	2	0	0	0	0	0	0	0	0	2	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16							
Course Code	CE214	Title of the Course	Advance Survey Field Work	L	T	P	C
Year	2 nd	Semester	4 th	0	0	2	1
Pre-Requisite	NIL	Co-requisite	CE210				
Course Objectives	used in land: to make stude on ground To use technic	surveying. ent competent enough to	s, science, and engineering to understand the measurement te o, carry out triangulation, topographic mapping, layout of but n engineering tools necessary for engineering practice.	•			

	Course Outcomes
CO1	Students are able setting up the plane table and plotting the given area by radiation method.
CO2	Students are able setting up the plane table and plotting the given area by intersection method.
CO3	Students are able to do traversing of the given area by plane table.
CO4	Students are able to solve three point problem by mechanical method.
CO5	Students are able to solve three point problem by graphical method.
CO6	Students are able to solve two point problem.
CO7	Students are able to carry out Triangulation and Trilateration of a given area.
CO8	Students are able to layout a simple circular curve on the ground using tape by perpendicular offset method.
CO9	Students are able to layout a simple circular curve on the ground using tape by radial offset method.
CO10	Students are able to layout a simple circular curve on the ground using two theodolite method.
CO11	Students are able to layout a building on the ground.
CO12	Students are able to plot the details as well as contours (topographic mapping) of area.
CO13	Students are able work on Electronic Total Survey Station.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
1	Setting up the plane table and plotting the given area by radiation method.	2	1
2	Setting up the plane table and plotting the given area by intersection method.	2	2
3	Traversing of the given area by plane table.	2	3
4	To solve three point problem by mechanical method.	2	4
5	To solve three point problem by graphical method.	2	5
6	To solve two point problem.	2	6
7	To carry out Triangulation and Trilateration of a given area.	2	7
8	Layout a simple circular curve on the ground using tape by perpendicular offset method.	2	8
9	Layout a simple circular curve on the ground using tape by radial offset method.	2	9
10	Layout a simple circular curve on the ground using two theodolite method.	2	10
11	Layout a building on the ground.	2	11
12	To plot the details as well as contours (topographic mapping) of area.	2	12
13	Demonstration and working on Electronic Total Survey Station.	2	13

Reference Books:

Lab Manual Provided by the Department.

Kanetkar, T. P., "Surveying and Levelling" Vol I and II, Pune Vidyarthi Griha Prakashan, Pune, India.

Punmia, B. C., "Surveying Vol I and II" Laxmi Publications, Delhi, India.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	2	0	0	0	2	0	0	0	1	2	0	2	_	_
CO1	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO2	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO3	2	0	0	1	2	0	0	0	1	2	0	2	2	3
CO4	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO5	2	0	0	2	2	0	0	0	2	2	0	2	2	3
CO6	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO7	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO8	2	0	0	1	2	0	0	0	2	2	0	3	2	3
CO9	2	0	0	2	2	0	0	0	2	2	0	2	2	3
CO10	2	0	0	0	2	0	0	0	1	2	0	2	2	3
CO11	2	0	0	1	2	0	0	0	2	2	0	3	2	3

1-	Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2015-16							
Course Code	CE215	Title of the Course	Concrete Technology Laboratory	L	T	P	C
Year	2 nd	Semester	4 th	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives			rties of ingredients of concrete. f concrete in fresh and hardened state.				

	Course Outcomes									
CO1	Able to evaluate the quality of cement for various concrete works.									
CO2	Able to evaluate the quality of fine and coarse aggregates for various concrete works.									
CO3	Ability to test the properties of fresh and hardened concrete.									

Unit No.	Title of the Experiments	Content of Unit	Contact Hrs.	Mapped CO
1	Cement	Normal Consistency of cement. Initial & final setting time of cement. Compressive strength of cement. Fineness of cement by air permeability method. Tensile strength.	6	CO1
2	Fine and Coarse Aggregate	Water absorption of aggregate. Sieve Analysis of Aggregate 8. Specific gravity & bulk density. Grading of aggregates. Sieve analysis of sand. Silt content of sand. Bulking of sand.	6	CO2
3	Fresh and Hardened Concrete	Slump Test. Compaction factor test. Vee Bee Consistometer test. Compressive Strength test. Flexural Strength test. Non-Destructive Test (Rebound Hammer and PUNDIT)	6	CO3

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	0	0	3	3	1	0	3	3	3	0	3	2	0
CO2	0	0	0	3	3	1	0	3	3	3	0	3	2	0
CO3	0	0	0	3	3	1	0	3	3	3	0	3	2	0

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2022-23											
Course Code	CE252	Title of the Course	Comprehensive Assessment-I	L	T	P	C				
Year	2 nd	Semester	4 th	-	-	-	1				
Pre-Requisite	Nil	Co-requisite	Nil								
Course Objectives	To test the learner's knowledge, skills and understanding of civil engineering at undergraduate level.										

	Course Outcomes
CO1	Learner should be able to demonstrate their knowledge in the field of civil engineering.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	-		-							
2	-		-							
3	-	Complete syllabus of 2 nd year B.Tech Civil Engineering	-	CO1						
4	-		-							
5	-		-							
Referen	ce Books:									
-	-									
e-Lear	e-Learning Source:									
-										

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	roi	FO2	103	FO4	103	100	FO7	100	F09	FOIU	FOII	FO12	F301	F302
CO1	3	3	3	3	0	3	0	3	0	0	0	3	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD